Alpha-cardiac actin mutations produce atrial septal defects.
نویسندگان
چکیده
Atrial septal defect (ASD) is one of the most frequent congenital heart defects (CHDs) with a variable phenotypic effect depending on the size of the septal shunt. We identified two pedigrees comprising 20 members segregating isolated autosomal dominant secundum ASD. By genetic mapping, we identified the gene-encoding alpha-cardiac actin (ACTC1), which is essential for cardiac contraction, as the likely candidate. A mutation screen of the coding regions of ACTC1 revealed a founder mutation predicting an M123V substitution in affected individuals of both pedigrees. Functional analysis of ACTC1 with an M123V substitution shows a reduced affinity for myosin, but with retained actomyosin motor properties. We also screened 408 sporadic patients with CHDs and identified a case with ASD and a 17-bp deletion in ACTC1 predicting a non-functional protein. Morpholino (MO) knockdown of ACTC1 in chick embryos produces delayed looping and reduced atrial septa, supporting a developmental role for this protein. The combined results indicate, for the first time, that ACTC1 mutations or reduced ACTC1 levels may lead to ASD without signs of cardiomyopathy.
منابع مشابه
A Novel Alpha Cardiac Actin (ACTC1) Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects
BACKGROUND A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects), conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5. METHODS AND RESULTS A set of 399 poly(AC) markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. Th...
متن کاملCardiac troponin T is necessary for normal development in the embryonic chick heart
The heart is the first functioning organ to develop during embryogenesis. The formation of the heart is a tightly regulated and complex process, and alterations to its development can result in congenital heart defects. Mutations in sarcomeric proteins, such as alpha myosin heavy chain and cardiac alpha actin, have now been associated with congenital heart defects in humans, often with atrial s...
متن کاملCardiac Alpha-Myosin (MYH6) Is the Predominant Sarcomeric Disease Gene for Familial Atrial Septal Defects
Secundum-type atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD) and are associated with a familial risk. Mutations in transcription factors represent a genetic source for ASDII. Yet, little is known about the role of mutations in sarcomeric genes in ASDII etiology. To assess the role of sarcomeric genes in patients with inherited ASDII, we analyze...
متن کاملHolt-Oram Syndrome: A Rare Variant
Holt-Oram syndrome is an autosomal dominant disorder, characterised by skeletal abnormalities of the upper limb associated with congenital heart defect, mainly atrial and ventricular septal defects. Skeletal defects exclusively affect the upper limbs in the preaxial radial ray distribution and are bilateral and asymmetrical. They range from clinodactyly, absent or digitalised thumb, hypoplastic...
متن کاملCongenital Heart Defects Are Rarely Caused by Mutations in Cardiac and Smooth Muscle Actin Genes
BACKGROUND Congenital heart defects (CHDs) often have genetic background due to missense mutations in cardiomyocyte-specific genes. For example, cardiac actin was shown to be involved in pathogenesis of cardiac septum defects and smooth muscle actin in pathogenesis of aortic aneurysm in combination with patent ductus arteriosus (PDA). In the present study, we further searched for mutations in h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 17 2 شماره
صفحات -
تاریخ انتشار 2008